Effects of moving the center's in an RBF network

نویسندگان

  • Chitra Panchapakesan
  • Marimuthu Palaniswami
  • Daniel Ralph
  • Chris Manzie
چکیده

In radial basis function (RBF) networks, placement of centers is said to have a significant effect on the performance of the network. Supervised learning of center locations in some applications show that they are superior to the networks whose centers are located using unsupervised methods. But such networks can take the same training time as that of sigmoid networks. The increased time needed for supervised learning offsets the training time of regular RBF networks. One way to overcome this may be to train the network with a set of centers selected by unsupervised methods and then to fine tune the locations of centers. This can be done by first evaluating whether moving the centers would decrease the error and then, depending on the required level of accuracy, changing the center locations. This paper provides new results on bounds for the gradient and Hessian of the error considered first as a function of the independent set of parameters, namely the centers, widths, and weights; and then as a function of centers and widths where the linear weights are now functions of the basis function parameters for networks of fixed size. Moreover, bounds for the Hessian are also provided along a line beginning at the initial set of parameters. Using these bounds, it is possible to estimate how much one can reduce the error by changing the centers. Further to that, a step size can be specified to achieve a guaranteed, amount of reduction in error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of moving bed biofilm reactor (MBBR) by applying adaptive neuro-fuzzy inference systeme (ANFIS), radial basis function (RBF) and Fuzzy Regression Analysis

The purpose of this study is to investigate the accuracy of predictions of aniline removal efficiency in a moving bed biofilm reactor (MBBR) by various methods, namely by RBF, ANFIS, and fuzzy regression analysis. The reactor was operated in an aerobic batch and was filled by light expanded clay aggregate (LECA) as a carrier for the treatment of Aniline synthetic wastewater. Exploratory data an...

متن کامل

Forecasting Gold Price Changes: Application of an Equipped Artificial Neural Network

The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...

متن کامل

Vibration Suppression of Simply Supported Beam under a Moving Mass using On-Line Neural Network Controller

In this paper, model reference neural network structure is used as a controller for vibration suppression of the Euler–Bernoulli beam under the excitation of moving mass travelling along a vibrating path. The non-dimensional equation of motion the beam acted upon by a moving mass is achieved.  A Dirac-delta function is used to describe the position of the moving mass along the beam and its iner...

متن کامل

Evaluating Seepage of Dam Body Using RBF and GFF Models of Artificial Neural Network

Dams have been always considered as the important infrastructures and their critical values are counted. Hence, evaluation and avoidance of dams’ destruction have a specific importance. Seepage occurrence in dams is an inevitable phenomenon. Despite all the progress in geotechnical engineering, up to now, seepage problem is the main conflict which occurs in dams. This study tried to estimate se...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2002